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Abstract. A method for studying the product of bandwidths for the Harper–Hofstader model is
proposed, which requires knowledge of the moments of the midband energies. A general formula
for these moments is conjectured, and the asymptotic representation for the product of bandwidths
computed in the limit of a weak magnetic flux using Szegö’s theorem for Hankel matrices. Then a
first approximation for the edge of the butterfly spectrum is given and its connection with Lévy’s
formula for Brownian motion discussed.

1. Introduction

A system of electrons on a square lattice in a uniform magnetic field displays an intricate
energy spectrum. For a rational magnetic flux, i.e. � = 2πp/q, with p and q relatively prime
integers, there are q bands in the spectrum if q is odd. For q even, the bands at E = 0 are
touching [6, 7]. The aim of this paper is to study the asymptotic properties of the product of
bandwidths. First, a method to obtain the band spectrum is discussed. Secondly, the problem
to be addressed is defined more precisely. The Hamiltonian of electrons on a square lattice in
a uniform magnetic field, in terms of magnetic translations T1 and T2, is given by

H = T1 + T ∗
1 + T2 + T ∗

2 (1.1)

where T1 and T2 obeys the following commutation relation:

T1T2 = ei�T2T1. (1.2)

In (1.2), � is the magnetic flux (see [26, 30] for details concerning magnetic translations).
For a rational magnetic flux,

� = 2π
p

q
(1.3)

the Hamiltonian becomes a q × q matrix. From now on, p and q will be relatively prime
integers.

One representation for the translation operators is

T1 = eiθ1w1 T2 = eiθ2w2 (1.4)
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where

w1 =




0 1 0 · · · 0
. . .

. . .
. . .

...
. . .

. . . 0

. . . 1
1 · · · 0




(1.5)

w2 = diag(ei�, ei2�, . . . , eiq�) (1.6)

and θj , j = 1, 2 are real numbers (Bloch parameters).
In this representation, the Hamiltonian is represented by the following matrix:

H(θ) =




a1 b1 0 · · · b̄q

b̄1 a2 b2 · · ·
0 b̄2 a3

. . .

...
...

. . .
. . . bq−1

bq 0 b̄q−1 aq




(1.7)

where

an(θ) = 2λ cos(�n + θ2) (n = 1, 2, . . . , q)

bn(θ) = eiθ1

and θ = (θ1, θ2).
Chamber’s relation [10], states that the characteristic polynomial of the Hamiltonian matrix

decomposes into a θ -independent polynomial Pp/q(E) of degree q and a function h(θ),

det(H(θ) − E) = Pp/q(E) + h(θ) (1.8)

h(θ) = (−1)q−12(cos(qθ1) + cos(qθ2)). (1.9)

When θ varies, the function h(θ) varies between −4 and 4, so, for a given rational flux
� = 2πp/q, the bands are obtained by intercepting the graph of the polynomial Pp/q(E) with
the horizontal lines drawn at 4 and −4. Figure 1 shows the procedure for p = 1, q = 3.

For the case in figure 1 there are three bands, because q = 3. Counting from the left these
are Band1 = [−1−√

3,−2], Band2 = [1−√
3,−1+

√
3] and Band3 = [2, 1+

√
3]. Denote the

widths of these bands by �1, �2 and �3, respectively. In general, for a polynomial Pp/q(E),
the widths will be denoted by, counting from negative to positive energies, �1, . . . , �q . The
roots of the polynomial Pp/q(E) are eigenvalues for the Hamiltonian, for special values of
Bloch momenta θ = (π/q, π/q). Let us call these roots E1, . . . , Eq , counting from the
negative to positive values of E. For the example in figure 1, p = 1, q = 3, these eigenvalues
are E1 = −√

6, E2 = 0, E3 = √
6. The energies E1, E2, . . . , Eq are called midband energies.

These energies were studied in [2, 30] using the Bethe ansatz. The problem can be now stated
as follows: find the asymptotic formula for the products of the bandwidths, i.e.

q∏
n=1

�n. (1.10)
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Figure 1. Bands for P1/3 = −x3 + 6x.

In the final section of the paper, it is found that, for a weak magnetic field � = 2π 1
q

→ 0,
the asymptotic formula can be arranged as a product of terms, each term approaching zero
faster than the next-neighbour term, equation (5.14):

q∏
n=1

�n ∼ 2−q2
q−q exp(−qd0 + d1 + O(1)). (1.11)

Here, d0 and d1 are some constants. Before ending this section, we write the polynomial
Pp/q(E) as a characteristic polynomial of a tridiagonal matrix. In this way it will become
easier to compute the moments of the roots of the polynomial Pp/q(E), which we need to
obtain the asymptotic formula (1.11). The moments will be the main object of study in
section 3. From this point to the end of the introduction, the formulae are taken from [20].

The roots of Pp/q(E) are special eigenvalues and correspond for those θ for which h(θ) =
0. Studying the polynomial Pp/q(E) becomes easier if we choose another representation for
the Hamiltonian matrix:

T1 = eiθ1w1 (1.12)

T2 = ei�/2eiθ2 eiθ1w2w1. (1.13)

In this case the Hamiltonian matrix acquires the form

H̃ (θ) =




0 a1 0 · · · āq

ā1 0 a2 · · ·
0 ā2 0

. . . 0
...

...
. . .

. . . aq−1

aq 0 āq−1 0




(1.14)

with

ar =
(

1 + exp

[
i�

(
r +

1

2

)
+ iθ2

])
eiθ1 .

Chamber’s relation in the above representation is

det(H̃ (θ) − E) = Pp/q(E) + h̃(θ) (1.15)
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where

h̃(θ) = (−1)q−12(cos(qθ1) + (−1)p cos(q(θ2 + θ1))). (1.16)

This last representation is convenient because for the special value θ0 = (θ10, θ20) =
(0, π(1 + p/q)), simultaneously

h̃(θ0) = 0 (1.17)

and

aq(θ0) = 0 (1.18)

which makes H̃ (θ0) a tridiagonal matrix. Out of this tridiagonal matrix, recursive equations
can be deduced for generating the polynomial Pp/q(E). Let P̃0(E), P̃1(E), . . . , P̃q(E) be a
sequence of polynomials generated by the following relations:

P̃0(E) = 1 (1.19)

P̃1(E) = −E (1.20)

P̃n(E) = −EP̃n−1(E) − βn−1P̃n−2(E) (n = 2, 3, . . . , q) (1.21)

where

βn = 4 sin2

(
�

2
n

)
(n = 1, 2, . . . , q) (1.22)

� = 2πp/q.

It follows that P̃q(E) = Pp/q(E) and that the polynomial Pp/q(E) is the characteristic
polynomial of the following tridiagonal matrix, which contains only positive numbers:

M =




0 β1 0 · · · 0
1 0 β2 · · ·
0 1 0

. . . 0
...

...
. . .

. . . βq−1

0 0 1 0




(1.23)

Pp/q(E) = det(M − E). (1.24)

2. Bandwidth product

From the paper [21], it is known that the bandwidths obey the inequalities (with e = exp(1) =
2.718 . . .):

2(1 +
√

5)

|P ′
p/q(En)| < �n <

8e

|P ′
p/q(En)| n = 1, . . . , q (2.1)

where P ′
p/q(En) is the derivative of Pp/q(E) computed at the eigenvalue En, which are the

roots of Pp/q(E). Consequently,

(2 + 2
√

5)q
1

|∏q

n=1 P
′
p/q(En)|

<

q∏
n=1

�n < (8e)q
1

|∏q

n=1 P
′
p/q(En)|

. (2.2)
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The product
∏q

n=1 P
′
p/q(En) can be re-expressed as

q∏
j>i=1

(Ej − Ei)
2. (2.3)

The formula (2.3) can be written as a product of two Vandermonde determinants:

q∏
j>i=1

(Ej − Ei)
2 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
E1 E2 · · · Eq

E2
1 E2

2 · · · E2
q

...
...

...

E
q−1
1 E

q−1
2 · · · E

q−1
q

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

1 E1 E2
1 · · · E

q−1
1

1 E2 E2
2 · · · E

q−1
2

...
...

...
...

1 Eq E2
q · · · E

q−1
q

∣∣∣∣∣∣∣∣∣∣∣
. (2.4)

By this observation, the product
∏q

n=1 P
′
p/q(En) can be written in terms of the eigenvalue

moments, defined as

s2k =
q∑

n=1

E2k
n k = 1, 2, 3, . . . . (2.5)

Putting it all together gives

(2 + 2
√

5)q
1

σq−1
<

q∏
n=1

�n < (8e)q
1

σq−1
(2.6)

where σq−1 is the Hankel determinant:

σq−1 =

∣∣∣∣∣∣∣∣∣∣∣

q s1 s2 · · · sq−1

s1 s2 s3 · · · sq

s2 s3 s4 · · · sq+1

...
...

...
...

sq−1 sq sq+1 · · · s2q−2

∣∣∣∣∣∣∣∣∣∣∣
. (2.7)

To obtain the asymptotic representation of the product of the bandwidths, as q → ∞, a
separate study of the eigenvalue moments, s2k , is necessary. The next section is dedicated to
this study.

3. Eigenvalue moments

First, we show that

s2k = q

[k2/4]∑
j=0

aj (k) cos(2πjp/q) if q > k (3.1)

where aj are integer numbers that do not depend on p and q. Here [k2/4] is the integer part
of k2/4.

To see this, note that the eigenvalue moments can be computed from the trace of the powers
of the matrix M , equation (1.23):

s2k = Tr(M2k). (3.2)
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Let us consider two examples, for k = 4 and 6:

Tr(M4) =
q−1∑
m=1

(2β2
m + 4βm−1βm) (3.3)

Tr(M6) =
q−1∑
m=1

(6β3
m + 6β2

m−1βm + 6βm−1β
2
m + 6βm−2βm−1βm) (3.4)

where βm = 0 if m < 0. The sum can be extended to q, because βq = 0. We find then (here
C := e2π ip/q):

s4 = Tr(M4) =
q∑

m=1

(2(2 − Cm − C−m)2 + 4(2 − Cm−1 − C−m+1)(2 − Cm − C−m))

= 4q(7 + 2 cos(2πp/q)). (3.5)

In general,

s2k =
q∑

m=1

∑
l0+l1+···+lj=k

dl0l1···lj β
lj
m−j · · ·βl1

m−1β
l0
m (3.6)

where j takes values between 0 and k − 1; compare with (3.4). The coefficients dl0l1···lj do not
depend on p and q. They only depend on k and on (l0, l1, . . . , lj ). Moreover, we can write

q∑
m=1

β
lj
m−j · · ·βl1

m−1β
l0
m =

∑
n

gnC
ξn (3.7)

where gn are integer numbers which do not depend on p and q and the index n runs from 0
over a finite range. In the above sum, the only non-zero terms will arise for those powers ξn
which do not depend on m. This fact is a consequence of the structure of (l0, l1, . . . , lj ) and
not of p and q. The sum over m will collect q identical terms so in the result the parameter
q will be factor out. Note that for a fixed k the same (l0, l1, . . . , lj )-structure is present for
all q > k. For q � k, some (l0, l1, . . . , lj ) are not present. For example, for q = k the term
βm−k+1 · · ·βm−1βm is not present, whereas for all q > k it is present. The maximum value for
j in (3.1) is [k2/4]. This will be explained later, in section 4, after formula (4.5).

To proceed further, note that in the formula for s2k , equation (3.1), the parameter p appears
only in the ratio p/q. Because of this, the analysis of the eigenvalue moments can be extended
to all real magnetic fluxes. Indeed, for an irrational ω, let us consider a sequence of rational
approximants pn/qn → ω, as n → ∞. For each n we obtain

s4,n = 4qn(7 + 2 cos(2πpn/qn)). (3.8)

So, in the limit n → ∞,

〈E4(ω)〉 := lim
n→∞

∑qn
j=1 E

4
j,n

qn
= 4(7 + 2 cos(2πω)) (3.9)
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where Ej,n, j = 1, . . . , qn are the special eigenvalues (roots of Ppn/qn(E)) for the flux
�n = 2πpn/qn. Here are the first five limit eigenvalue averages:

〈E2(ω)〉 = 4 (3.10)

〈E4(ω)〉 = 4(7 + 2 cos(2πω)) (3.11)

〈E6(ω)〉 = 4(58 + 36 cos(2πω) + 6 cos(4πω)) (3.12)

〈E8(ω)〉 = 4(539 + 504 cos(2πω) + 154 cos(4πω) + 24 cos(6πω) + 4 cos(8πω)) (3.13)

〈E10(ω)〉 = 4(5486 + 6580 cos(2πω) + 2770 cos(4πω) + 780 cos(6πω)

+210 cos(8πω) + 40 cos(10πω) + 10 cos(12πω)). (3.14)

Now, a natural question comes to mind: is there a general formula for s2k , or equivalently
for 〈E2k(ω)〉?

At this time, I have a partial answer to this question. From the first eigenvalue moments
the following statement can be inferred:

〈E2k(ω)〉 =
(

2k
k

)2
(

1 +
[k2/4]∑
m=1

k
(2k − 2m − 1)!!

(2k − 1)!!

k!

(k − jm − 2)!
Pm(k) sin2m(πω)

)
(3.15)

where for each m the positive integer number jm is that one for which

2[(jm + 1)2/4] + 2 � 2m � 2[(jm + 2)2/4]. (3.16)

The first pairs (2m, jm) are (2, 0), (4, 1), (6, 2), (8, 2), (10, 3), (12, 3), (14, 4), (16, 4), (18, 4).
Pm(k) is a polynomial of degree 3m − jm − 3. This is so because the power of k in front of
sin2m(πp/q) is 2m. There is one more detail about Pm(k) which can be found by inspection
of the first few terms. Namely, the coefficients of the largest power in k, i.e. λm in

Pm(k) = λmk
3m−jm−3 + · · · (3.17)

are generated by
√

2x

sinh(
√

2x)
=

∞∑
m=0

λmx
2m. (3.18)

The following is a list of the first three polynomials Pm (the first eight polynomials are listed
in the appendix):

P1(k) = −1

3
(3.19)

P2(k) = 1

90
(7k2 − 4k − 15) (3.20)

P3(k) = − 1

1890
(31k4 − 60k3 − 101k2 + 66k + 280). (3.21)

From the formula (3.15) we find s2k that we need in (2.7). Namely,

s2k = q〈E2k(p/q)〉 if q > k. (3.22)

In order to compute the asymptotic representation of the Hankel determinant (2.7), knowledge
of Pm(k) will suffice, because the largest moment needed in (2.7) is s2q−2 which is still given
by the formula (3.22), since q > (2q − 2)/2. Because there is no general formula for the
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polynomials Pm(k), the asymptotic representation for the bandwidth product for all magnetic
fluxes cannot be computed.

Still, the case � = 2π 1
q

when q → ∞ can be analysed, which is done in the final
section. Before that, the eigenvalue moments can be further studied, using the summation
formula (3.17). The analysis from the next section, besides its intrinsic value, is also useful
for understanding the asymptotic formula for the bandwidth product in the case of a weak
magnetic flux.

4. The edge of the butterfly spectrum and Lévy’s formula for Brownian motion

In order to obtain a first approximation for the edge of the spectrum, we can make use of the
general formula which gives the eigenvalue moments (3.15). Let us write the formula for the
eigenvalue moments as a power series in k and retain only the largest power in k. Call the
result the first approximation to the eigenvalue moments, and use (1) as a superscript to mark
it:

qn∑
j=1

E
2k,(1)
j,n = qn

(
2k
k

)2 [k2/4]∑
m=0

λm

1

2m
k2m sin2m

(
π
pn

qn

)
. (4.1)

For k → ∞ we obtain
qn∑
j=1

E
2k,(1)
j,n = qn(C

k
2k)

2 k sin(π(pn/qn))

sinh (k sin(π(pn/qn)))
(4.2)

and

E(1)
max(ω) = lim

pn/qn→ω
lim
k→∞

(
qn(C

k
2k)

2 k sin(π(pn/qn))

sinh (k sin(π(pn/qn)))

)1/2k

(4.3)

from which, the first approximation of the edge of the butterfly spectrum is given by

E(1)
max(ω) = 4e− 1

2 sin(πω) (4.4)

where 0 � ω � 1 and the flux is � = 2πω.
Figure 2 presents, for each p/q, q = 53, p = 1, 2, . . . , 52, the spectrum Ej(p/q),

j = 1, . . . , q on a horizontal line. The vertical coordinate is the flux (though we represented
only p/q and not 2πp/q). The horizontal coordinate is obviously energy. Superimposed on

Figure 2. Spectrum for q = 53

and the function 4e− 1
2 sin(πω), the first

approximation for the edge.
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the above-described spectrum is the graph of 4e− 1
2 sin(πω) as a function of ω, which is the first

approximation to the edge of the spectrum. Second-order approximations can be obtained by
summing the next largest power of k, namely all terms that contain k2m−1. It is quite clear
that a full understanding of the sequence of polynomials Pm(k) will enable us to decipher the
fractal character of the edge of the spectrum.

At this point it is worth mentioning works connected to the eigenvalue moments formula,
(3.15). The geometric interpretation of the trace of the Hamiltonian can be found, for example,
in [8]. For this, consider the square lattice Z2, where Z are the integer numbers. Let )2k be
the set of all paths of lengths 2k which start and end at the origin (0, 0). For such a path ), let
area()) be the oriented area enclosed by ) (see [25] for details). Then we have

Tr(H 2k) = q
∑
)∈)2k

eiπ p

q
area())

. (4.5)

Compare this expression with the formulae for the eigenvalue moments. For example, for
k = 2 we obtain that 4 × 7 = 28 represents the number of paths of length 4 starting and
ending at the origin, which enclose zero area. With the interpretation (4.5) for the eigenvalue
moments, it is easy to explain the maximum value [k2/4] reached by j in (3.1). The maximum
value for the area()), when ) has a fixed perimeter of 2k, is achieved when ) is a square with
edge of length k/2 (when k is even), so the area is k2/4. By the same token, for k odd, the
maximum area is [k2/4].

As k → ∞ random walks with 2k steps, approach (using a suitable renormalization, see
[9]) two-dimensional Brownian motion. The probability distribution of the areas enclosed by
a planar Brownian motion was computed first by Lévy [24]. Lévy’s result is

E[exp(ig area)] = g area /2

sinh(g area /2)
(4.6)

where E[ ] is the expectation value and g is a real parameter. Also, in a recent paper [25],
Mingo and Nica studied the power sums of the areas. What these authors found is that(

2k
k

)−1 ∑
)∈)2k

(area()))2m = R2m(k) if k > 2m (4.7)

where R2m(k) is a rational function in k. The degree of R2m(k) (i.e. the difference between
the degrees of the numerator and the denominator of R2m(k)) is equal to 2m, and the leading
coefficient of R2m(k), call it ν2m, is generated by

z

sin z
=

∞∑
j=0

ν2m

(2m)!
(2z)2m. (4.8)

Both of these results are connected with the generating function for the leading coefficients
of the polynomials Pm(k), equation (3.18). The formula for the eigenvalue moments,
equation (3.15) goes beyond Lévy’s formula. From this perspective, a full understanding
of the polynomials Pm(k) will shed new light on planar Brownian motion.

5. Asymptotic representation of the product of bandwidths for a weak magnetic field
and Szegö’s theorem

We now aim to compute the asymptotic representation of the product of the bandwidths,∏q

n=1 �n, for a weak magnetic flux, � = 2π 1
q

, when q → ∞. We will use the inequality (2.6)
together with the asymptotic representation of the Hankel determinant, (2.7). The entries of
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the Hankel determinant are the moments s2k , see (3.22). Up to the first order of approximation,
equation (4.2), the moments are

s2k = q

(
2k
k

)2
k sin(π/q)

sinh(k sin(π/q))
. (5.1)

To go further, and because of lack of knowledge of the polynomials Pm(k), it is assumed that
(for the case of a weak flux), the second and all other orders of approximation are much smaller
than the first order. Moreover, because

C1 <
k sin(π/q)

sinh(k sin(π/q))
ek/2q < C2 k = 1, 2, . . . , q − 1 (5.2)

the influence of the first approximation term, i.e.

k sin(π/q)

sinh(k sin(π/q))
(5.3)

on the asymptotic formula is considered to be of the same order of magnitude as given by the
term e−k/2q . In (5.2) C1 ∼ πe/ sinh(π) = 0.739 and C2 ∼ e1/π/ sinh(1) = 1.169. Thus the
moments s2k to be used to find the asymptotic formula for the Hankel determinant are

s2k = q

(
2k
k

)2

e−k/2q (5.4)

and it follows that

σq−1 = qqe−q+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0

(
2
1

)2

0

(
4
2

)2

· · ·

0

(
2
1

)2

0

(
4
2

)2 ...

(
2
1

)2

0

(
4
2

)2 ...

0

(
4
2

)2 ...

(
4
2

)2 ...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.5)

The dimension of σq−1 is q. To find the asymptotic representation of σq−1, as q → ∞,
we shall employ a theorem of Szegö. One version of this theorem [17], gives the asymptotic
behaviour of a determinant Dn−1(f ) := det(bµν)0�µ,ν�n−1 whose generic element can be
expressed as

bµν =
∫ 1

−1
xµ+νf (x) dx (5.6)

that is to say, the entries of the determinant can be expressed as the moments of a function
f (x).

The theorem says that, as n → ∞,

Dn−1(f ) = Dn−1(1) exp

(
nc0 +

1

8

∞∑
j=1

jc2
j + O(1)

)
(5.7)
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where ck k = 0, 1, . . . , are the Fourier coefficients of the function ln(f (cos θ)):

ck = 1

2π

∫ π

−π

e−ikθ ln(f (cos θ)) dθ. (5.8)

To apply this theorem we need the function f . The generic term in the Hankel determinant
σq−1 can be expressed as an integral as follows:

bµν = 2

π2
4µ+ν

∫ 1

−1
xµ+νK ′(x) dx (5.9)

where K ′(x) is the complete elliptic integral of the first kind:

K ′(x) =
∫ π/2

0
(1 − x ′ 2 sin θ)−1/2 dθ = π

2
2F1

(
1

2
,

1

2
; 1; x ′ 2

)
. (5.10)

Here x2 + x ′ 2 = 1 and 2F1(a, b; c; x) is Gauss’ hypergeometric series [3].
The function f is then

f (x) = K ′(x). (5.11)

The determinant Dn−1(1) can be computed exactly and is given by the following product,
using formula (2.2.15) in [27]:

Dn−1(1) = 2
n−1∏
k=1

(
k +

1

2

)−1 ( 1

2k
Ck

2k

)−2

. (5.12)

For large values of n

Dn−1(1) = 2−n(n−1)+O(1).

Combining with the result of Szegö’s theorem, the asymptotic representation of σq−1 reads
as

σq−1 = qqe−q+1

(
2

π2

)q

4q(q−1)Dq−1(1) exp

(
qc0 +

1

8

∞∑
j=1

jc2
j + O(1)

)
. (5.13)

Here c0 = 0.729.
From this we find, as q → ∞, for a weak magnetic field (� = 2π 1

q
),

q∏
n=1

�n ∼ 2−q2
q−q exp(−qd0 + d1 + O(1)) (5.14)

where d0 and d1 are constants which cannot be made precise because of the inequality we
started with, equation (2.6), and because of the approximations we have used, equations (5.1)
and (5.4).

Suppose now that the bandwidths are written as an exponential:

�n = e−µnq . (5.15)

From the above definition we obtain the asymptotic formula for the average value µn:∑q

n=1 µn

q
= ln 2 +

ln q

q
− d0

q
+ O

(
1

q

)
. (5.16)

At the limit,

〈µ〉 := lim
q→∞

∑q

n=1 µn

q
= ln 2. (5.17)
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6. Conclusions

This paper contains asymptotic results on the bandwidths in the Hofstadter spectrum for two-
dimensional electrons in a magnetic field. Besides definite results, it also leaves some open
questions. The important results are: the asymptotic formula (5.14), the formula for the edge
of the spectrum (4.4) and the conjecture on the general formula for the eigenvalue moments
(3.15).

The open questions are. What is the general formula for the polynomials Pm(k)? How
do we obtain the fractal structure of the edge of the spectrum from the eigenvalue moments?
How do we find the asymptotic representation for the product of the bandwidths for every flux,
using Szegö’s formula?

Papers [1, 4, 5, 11–16, 18, 19, 22, 23, 28, 31, 32] are included as useful general references
for this subject.
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Appendix

Here the first eight polynomials Pm(k) are listed, which appeared in the eigenvalue moment
formula (3.15). The following formulae are conjectured from the first 25 eigenvalue moments
(3.14):

P1 = −3−1 (A.1)

P2 = 90−1(7k2 − 4k − 15) (A.2)

P3 = −1890−1(31k4 − 60k3 − 101k2 + 66k + 280) (A.3)

P4 = 37 800−1(127k7 − 1044k6 + 2246k5 + 328k4 + 7k3 − 12 244k2 − 220k + 25 200)

(A.4)

P5 = −3742 200−1(2555k9 − 31 887k8 + 137 946k7 − 243 774k6 + 290 499k5 − 796 527k4

+647 416k3 + 1661 436k2 − 95 184k − 3991 680) (A.5)

P6 = 10 216 206 000−1(1414 477k12 − 32 155 043k11 + 300 761 927k10

−1517 115 007k9 + 4720 753 473k8 − 10 693 488 621k7 + 20 222 071 853k6

−25 923 159 133k5 + 11 996 284 390k4 + 11 841 173 876k3

+45 697 115 160k2 + 12 156 530 400k − 90 810 720 000) (A.6)

P7 = −10 216 206 000−1(286 685k14 − 8595 813k13 + 110 951 109k12

−819 736 201k11 + 3945 073 115k10 − 13 604 875 839k9

+36 023 850 727k8 − 73 323 185 763k7 + 108 429 092 220k6
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−120 643 403 168k5 + 122 711 359 264k4 − 65 709 283 536k3

−63 479 070 720k2 − 19 852 750 080k + 186 810 624 000) (A.7)

P8 = 20 841 060 240 000−1(118 518 239k17 − 5242 493 627k16 + 104 055 035 258k15

−1233 596 237 660k14 + 9844 400 576 738k13 − 56 735 776 354 034k12

+247 874 192 827 336k11 − 847 184 326 535 620k10

+2294 971 824 780 007k9 − 4924 658 969 019 451k8

+8359 347 851 375 254k7 − 11 207 926 976 651 080k6

+11 409 224 332 806 816k5 − 7994 766 402 003 888k4

+4489 556 615 965 152k3 − 3442 931 101 232 640k2

−806 985 556 876 800k + 4668 397 493 760 000). (A.8)
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